
6-November-2007 © Copyright Ian D. Romanick 2007

Computer Graphics Programming I

Agenda:
● Additive specular reflections

● Projective textures

● Point sprites

● Multi-texture

● Texture combiners, part 2

6-November-2007 © Copyright Ian D. Romanick 2007

Specular Reflection w/Texture
OpenGL performs lighting and provides a single

interpolated color input to the texture combiner.
● Why is this wrong? (Or at least probably not what is

wanted...)

6-November-2007 © Copyright Ian D. Romanick 2007

Specular Reflection w/Texture
OpenGL performs lighting and provides a single

interpolated color input to the texture combiner.
● Why is this wrong? (Or at least probably not what is

wanted...)

● Texture color is typically a diffuse property.

6-November-2007 © Copyright Ian D. Romanick 2007

Separate Specular
Separate specular fixes this.

● Extension GL_EXT_separate_specular is part of
core GL 1.2 and later.

● Provides diffuse color as input to texture combiner.

● Adds specular color after texture application.

Enable with glLightModel:
glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL,
GL_SEPARATE_SPECULAR_COLOR);

glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL,
GL_SINGLE_COLOR);

6-November-2007 © Copyright Ian D. Romanick 2007

Secondary Color
Similar functionality without lighting.

Specify secondary color via
glSecondaryColor3{bsifd ubusui}[v].
● Works just like the various glColor calls, but no

alpha is specified.

● Enable the final add by enabling GL_COLOR_SUM.

Extension GL_EXT_secondary_color is part
of core GL 1.4 and later.

 Important: This gives a little more math that we
can do.

6-November-2007 © Copyright Ian D. Romanick 2007

Projective Textures
We can create an effect of a texture being

“projected” onto a surface.
● Like what a movie projector does.

What makes perspective projection (versus
parallel projection) “work”?

6-November-2007 © Copyright Ian D. Romanick 2007

Projective Textures
We can create an effect of a texture being

“projected” onto a surface.
● Like what a movie projector does.

What makes perspective projection (versus
parallel projection) “work”?
● Dividing by Z.

● Do the same thing with texture coordinates to get
the same effect!
• Except use the q coordinate.

6-November-2007 © Copyright Ian D. Romanick 2007

Usage Overview
Use OBJECT_LINEAR texgen to compute

initial texture coordinate as distance from the
center of the object.

Set texture matrix to:

1) Transform coordinate from object-space to
projector-space.

2) Apply perspective transformation.

3) Scale & bias from [-1, 1] to [0, 1]
• Unless you're using a mirrored wrap mode!

Just like the usual camera transform!

6-November-2007 © Copyright Ian D. Romanick 2007

Transform to Projector Space
Apply usual object-to-world transformations.

Use gluLookAt, for example, to for world-to-
projector transformation.

Use gluPerspective, for example, to
perform perspective transformation.
● Do this on texture matrix instead of separate

projection matrix!

6-November-2007 © Copyright Ian D. Romanick 2007

Scale & Bias
How do you transform from [-1, 1] to [0, 1]?

6-November-2007 © Copyright Ian D. Romanick 2007

Scale & Bias
How do you transform from [-1, 1] to [0, 1]?

● Multiply by 0.5 and add 0.5.

What sort of matrix does that for all
coordinates?

6-November-2007 © Copyright Ian D. Romanick 2007

Scale & Bias
How do you transform from [-1, 1] to [0, 1]?

● Multiply by 0.5 and add 0.5.

What sort of matrix does that for all
coordinates?

[
1
2

0 0
1
2

0
1
2

0
1
2

0 0
1
2

1
2

0 0 0 1
]

6-November-2007 © Copyright Ian D. Romanick 2007

Projective Texture Notes
Can also use EYE_LINEAR, but we need the

inverse modelview matrix.
● We'll use this for shadow maps in VGP353.

The previous operations need to be done in
reverse order to get the correct matrix.
● Right?

6-November-2007 © Copyright Ian D. Romanick 2007

References
http://developer.nvidia.com/object/Projective_Texture_Mapping.html

http://developer.nvidia.com/object/Projective_Texture_Mapping.html

6-November-2007 © Copyright Ian D. Romanick 2007

Point Sprites
Having a billboard that always faces the camera

can be very useful.
● Particle effects

For an arbitrary eye position, how do you
calculate the position of a quadrilateral that will
face the camera?

6-November-2007 © Copyright Ian D. Romanick 2007

Point Sprites
Having a billboard that always faces the camera

can be very useful.
● Particle effects

For an arbitrary eye position, how do you
calculate the position of a quadrilateral that will
face the camera?
● You probably cry...a lot.

● It can be done, but it's a waste of CPU time.

Point sprites do this essentially for free.

6-November-2007 © Copyright Ian D. Romanick 2007

Using Point Sprites
Point sprite mode is enabled with
GL_POINT_SPRITE.
● Per-texture unit set GL_COORD_REPLACE to
GL_TRUE.

Upper left of sprite gets (0, 0, 0, 1) for texture
coordinate, and lower right get (1, 1, 0, 1).
● Yes, this is backwards. Blame Nvidia.

● Or use a texture matrix to “fix” it.

Each point primitive will behave as usual, but
will have these interpolated texture coordinates.

6-November-2007 © Copyright Ian D. Romanick 2007

MultiTexture
GL_ARB_multitexture part of core in 1.3,

but almost universally available long before

Multiple, active textures per-drawing call.
● Multiple sets of texture coordinates

● Multiple sets of wrap state

● Multiple sets of environment state

● etc.

Maximum number of texture units queryable:
glGetIntegerv(GL_MAX_TEXTURE_UNITS,
&max_units);

6-November-2007 © Copyright Ian D. Romanick 2007

MultiTexture State
How do we track multiple, independent sets of

texture state?
● Before this extension there was no way to tell any of

the operations which texture unit to operate on.

6-November-2007 © Copyright Ian D. Romanick 2007

MultiTexture State
How do we track multiple, independent sets of

texture state?
● Before this extension there was no way to tell any of

the operations which texture unit to operate on.

● Add the notion of the “active” texture unit.

glActiveTexture(GLenum unit);

● Modal, like matrix mode.

● Strange API prevents the need to add new versions
of every texture function.
• Texture unit “parameter” is implied from the global state.

6-November-2007 © Copyright Ian D. Romanick 2007

Multiple Texture Coordinates
Problem: Can't call glActiveTexture

between begin / end.

6-November-2007 © Copyright Ian D. Romanick 2007

Multiple Texture Coordinates
Problem: Can't call glActiveTexture

between begin / end.

Solution: Add glTexCoord commands that
take the texture unit as a parameter.

glMultiTexCoord{234}{bsifd
ubusui}{v}(GLenum unit, ...);

6-November-2007 © Copyright Ian D. Romanick 2007

Multiple Texture Combiners
Combiner state is per-unit.

● One input is the texel value.

● The other input is one of:
• The primary color for unit 0.
• The output of the previous unit for all other units.

6-November-2007 © Copyright Ian D. Romanick 2007

Break

6-November-2007 © Copyright Ian D. Romanick 2007

Texture Combiners
Base OpenGL 1.2 functionality is very limited.

GL_ARB_texture_env_combine provides a
much better interface.
● More general

● More generic
• Operation performed not dependent on texture format.

● Extendable
• Several extensions add more possible operations

● Became part of core in 1.3

6-November-2007 © Copyright Ian D. Romanick 2007

Texture Combine Introduction
Source for RGB and A of each operand:

● Primary color, texture color, constant color, or
output of previous combiner

Modifier for RGB and A of each operand:
● Color, one-minus-color, alpha, or one-minus-alpha.

Operation for RGB and A:
● Replace, modulate, add, biased add, interpolate, or

subtract.

Post-scale for RGB and A

6-November-2007 © Copyright Ian D. Romanick 2007

Enable Texture Combine
Enable by setting GL_COMBINE as texture

environment mode:
glTexEnvi(GL_TEXTURE_ENV,
GL_TEXTURE_ENV_MODE, GL_COMBINE);

6-November-2007 © Copyright Ian D. Romanick 2007

Set Sources
Up to 3 sources depending on operation.

● Named GL_SOURCE{012}_{RGB,ALPHA}

Each source can be one of the following:
● GL_TEXTURE – current texture value

● GL_CONSTANT – per-stage constant color

● GL_PRIMARY_COLOR – interpolated primary color

● GL_PREVIOUS – output of previous combiner stage

Set via glTexEnvi:
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB,
GL_TEXTURE);

6-November-2007 © Copyright Ian D. Romanick 2007

Set Modifiers
Modifiers named
GL_OPERAND{012}_{RGB,ALPHA}

Can be one of:
● GL_SRC_COLOR – value from selected color source

● GL_ONE_MINUS_SRC_COLOR – 1.0 minus value
from selected color source

● GL_SRC_ALPHA – value from selected alpha source

● GL_ONE_MINUS_SRC_ALPHA – 1.0 minus value
from selected alpha source

6-November-2007 © Copyright Ian D. Romanick 2007

Set Modifiers (cont.)
GL_*_COLOR can only be used with RGB

operands

Also set with glTexEnvi:
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB,
GL_ONE_MINUS_ALPHA);

6-November-2007 © Copyright Ian D. Romanick 2007

Set Operation
Six possible operations:

● GL_REPLACE – output is operand 0

● GL_MODULATE / GL_ADD / GL_SUBTRACT – output is
Arg0 {+ - * } Arg1

● GL_ADD_SIGNED – Arg0 + Arg1 - 0.5

● GL_INTERPOLATE – Arg0 * Arg2 + Arg1 * (1 –
Arg2)

Again, glTexEnvi for the win:
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB,
GL_SUBTRACT);

6-November-2007 © Copyright Ian D. Romanick 2007

Set Scale
Three possible scale factors:

● 1.0, 2.0, 4.0

Set with glTexEnvi or glTexEnvf:
glTexEnvi(GL_TEXTURE_ENV, GL_RGB_SCALE, 2);

glTexEnvf(GL_TEXTURE_ENV, GL_ALPHA_SCALE,
4.0);

6-November-2007 © Copyright Ian D. Romanick 2007

Dotproduct Combiner
GL_ARB_texture_env_dot3 part of 1.3 core

Adds to new combine operations:
● GL_DOT3_RGB – 3 component dot-product of RGB

components

● GL_DOT3_RGBA – Like GL_DOT3_RGB, but also
writes value to alpha component

● Actual operation pre-biases each component by
-0.5, then scales result by 4.0.
• Usual post-scale is applied after the built-in scale.

6-November-2007 © Copyright Ian D. Romanick 2007

Dotproduct Combiner (cont.)
Why pre-bias by -0.5?

6-November-2007 © Copyright Ian D. Romanick 2007

Dotproduct Combiner (cont.)
Why pre-bias by -0.5?

● Range of colors is [0, 1], but components of
normals, for example, can be negative.

Why post-scale by 4.0?

6-November-2007 © Copyright Ian D. Romanick 2007

Dotproduct Combiner (cont.)
Why pre-bias by -0.5?

● Range of colors is [0, 1], but components of
normals, for example, can be negative.

Why post-scale by 4.0?
● The pre-bias gives a range of [-0.5, 0.5]. Multiplying

two values in that range gives a new range or
[-0.25, 0.25]. The post-scale expands the range to
[-1.0, 1.0].

6-November-2007 © Copyright Ian D. Romanick 2007

Related Extensions
GL_EXT_texture_env_combine

● Like ARB version

● Without GL_SUBTRACT.

● Operands to GL_INTERPOLATE more restricted.

● Lots of older hardware supports this but not ARB
version.

GL_EXT_texture_env_dot3
● Like ARB version, without built-in scale by 4.0.

● AFAIK, only the original Radeon (Radeon 7200)
supports this and not the ARB version.

6-November-2007 © Copyright Ian D. Romanick 2007

Related Extensions
GL_ARB_texture_env_crossbar

Part of core since GL 1.4.

Adds new sources:
● GL_TEXTURE<n> - Use any texture as an input to

any stage

 Supported by everyone except Nvidia.

● Has rules about what to do when a disabled unit is
referenced that didn't work on Nvidia hardware.

● That rule was relaxed for GL 1.4.

6-November-2007 © Copyright Ian D. Romanick 2007

Related Extensions
GL_ATI_texture_env_combine3

Adds new operations:
● GL_MODULATE_ADD_ATI – Arg0 * Arg1 + Arg2

● GL_MODULATE_ADD_SIGNED_ATI – Arg0 * Arg1 +
Arg2 - 0.5

● GL_MODULATE_SUBTRACT_ATI – Arg0 * Arg1 –
Arg2

Adds new sources:
● GL_ZERO and GL_ONE

Supported by all ATI hardware since Radeon
7200.

6-November-2007 © Copyright Ian D. Romanick 2007

Related Extensions
GL_NV_texture_env_combine4

New environment mode (GL_COMBINE4) with
two operations:
● GL_ADD – (Arg0 * Arg1) + (Arg2 * Arg3)

● GL_ADD_SIGNED – (Arg0 * Arg1) + (Arg2 * Arg3) –
0.5

● All other modes can be derived from these two!

Adds new sources:
● GL_ZERO and GL_TEXTURE<n>

Supported on all Nvidia hardware since the
TNT.

6-November-2007 © Copyright Ian D. Romanick 2007

Next week...
Lighting calculations with texture combiners

● Tangent space

● GL_DOT3_RGB for the win! :)

Quiz #3.

6-November-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

