
6-November-2007 © Copyright Ian D. Romanick 2007

Computer Graphics Programming I

Agenda:
● Additive specular reflections

● Projective textures

● Point sprites

● Multi-texture

● Texture combiners, part 2

6-November-2007 © Copyright Ian D. Romanick 2007

Specular Reflection w/Texture
OpenGL performs lighting and provides a single

interpolated color input to the texture combiner.
● Why is this wrong? (Or at least probably not what is

wanted...)

6-November-2007 © Copyright Ian D. Romanick 2007

Specular Reflection w/Texture
OpenGL performs lighting and provides a single

interpolated color input to the texture combiner.
● Why is this wrong? (Or at least probably not what is

wanted...)

● Texture color is typically a diffuse property.

6-November-2007 © Copyright Ian D. Romanick 2007

Separate Specular
Separate specular fixes this.

● Extension GL_EXT_separate_specular is part of
core GL 1.2 and later.

● Provides diffuse color as input to texture combiner.

● Adds specular color after texture application.

Enable with glLightModel:
glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL,
GL_SEPARATE_SPECULAR_COLOR);

glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL,
GL_SINGLE_COLOR);

6-November-2007 © Copyright Ian D. Romanick 2007

Secondary Color
Similar functionality without lighting.

Specify secondary color via
glSecondaryColor3{bsifd ubusui}[v].
● Works just like the various glColor calls, but no

alpha is specified.

● Enable the final add by enabling GL_COLOR_SUM.

Extension GL_EXT_secondary_color is part
of core GL 1.4 and later.

 Important: This gives a little more math that we
can do.

6-November-2007 © Copyright Ian D. Romanick 2007

Projective Textures
We can create an effect of a texture being

“projected” onto a surface.
● Like what a movie projector does.

What makes perspective projection (versus
parallel projection) “work”?

6-November-2007 © Copyright Ian D. Romanick 2007

Projective Textures
We can create an effect of a texture being

“projected” onto a surface.
● Like what a movie projector does.

What makes perspective projection (versus
parallel projection) “work”?
● Dividing by Z.

● Do the same thing with texture coordinates to get
the same effect!
• Except use the q coordinate.

6-November-2007 © Copyright Ian D. Romanick 2007

Usage Overview
Use OBJECT_LINEAR texgen to compute

initial texture coordinate as distance from the
center of the object.

Set texture matrix to:

1) Transform coordinate from object-space to
projector-space.

2) Apply perspective transformation.

3) Scale & bias from [-1, 1] to [0, 1]
• Unless you're using a mirrored wrap mode!

Just like the usual camera transform!

6-November-2007 © Copyright Ian D. Romanick 2007

Transform to Projector Space
Apply usual object-to-world transformations.

Use gluLookAt, for example, to for world-to-
projector transformation.

Use gluPerspective, for example, to
perform perspective transformation.
● Do this on texture matrix instead of separate

projection matrix!

6-November-2007 © Copyright Ian D. Romanick 2007

Scale & Bias
How do you transform from [-1, 1] to [0, 1]?

6-November-2007 © Copyright Ian D. Romanick 2007

Scale & Bias
How do you transform from [-1, 1] to [0, 1]?

● Multiply by 0.5 and add 0.5.

What sort of matrix does that for all
coordinates?

6-November-2007 © Copyright Ian D. Romanick 2007

Scale & Bias
How do you transform from [-1, 1] to [0, 1]?

● Multiply by 0.5 and add 0.5.

What sort of matrix does that for all
coordinates?

[
1
2

0 0
1
2

0
1
2

0
1
2

0 0
1
2

1
2

0 0 0 1
]

6-November-2007 © Copyright Ian D. Romanick 2007

Projective Texture Notes
Can also use EYE_LINEAR, but we need the

inverse modelview matrix.
● We'll use this for shadow maps in VGP353.

The previous operations need to be done in
reverse order to get the correct matrix.
● Right?

6-November-2007 © Copyright Ian D. Romanick 2007

References
http://developer.nvidia.com/object/Projective_Texture_Mapping.html

http://developer.nvidia.com/object/Projective_Texture_Mapping.html

6-November-2007 © Copyright Ian D. Romanick 2007

Point Sprites
Having a billboard that always faces the camera

can be very useful.
● Particle effects

For an arbitrary eye position, how do you
calculate the position of a quadrilateral that will
face the camera?

6-November-2007 © Copyright Ian D. Romanick 2007

Point Sprites
Having a billboard that always faces the camera

can be very useful.
● Particle effects

For an arbitrary eye position, how do you
calculate the position of a quadrilateral that will
face the camera?
● You probably cry...a lot.

● It can be done, but it's a waste of CPU time.

Point sprites do this essentially for free.

6-November-2007 © Copyright Ian D. Romanick 2007

Using Point Sprites
Point sprite mode is enabled with
GL_POINT_SPRITE.
● Per-texture unit set GL_COORD_REPLACE to
GL_TRUE.

Upper left of sprite gets (0, 0, 0, 1) for texture
coordinate, and lower right get (1, 1, 0, 1).
● Yes, this is backwards. Blame Nvidia.

● Or use a texture matrix to “fix” it.

Each point primitive will behave as usual, but
will have these interpolated texture coordinates.

6-November-2007 © Copyright Ian D. Romanick 2007

Multi­Texture
GL_ARB_multitexture part of core in 1.3,

but almost universally available long before

Multiple, active textures per-drawing call.
● Multiple sets of texture coordinates

● Multiple sets of wrap state

● Multiple sets of environment state

● etc.

Maximum number of texture units queryable:
glGetIntegerv(GL_MAX_TEXTURE_UNITS,
&max_units);

6-November-2007 © Copyright Ian D. Romanick 2007

Multi­Texture State
How do we track multiple, independent sets of

texture state?
● Before this extension there was no way to tell any of

the operations which texture unit to operate on.

6-November-2007 © Copyright Ian D. Romanick 2007

Multi­Texture State
How do we track multiple, independent sets of

texture state?
● Before this extension there was no way to tell any of

the operations which texture unit to operate on.

● Add the notion of the “active” texture unit.

glActiveTexture(GLenum unit);

● Modal, like matrix mode.

● Strange API prevents the need to add new versions
of every texture function.
• Texture unit “parameter” is implied from the global state.

6-November-2007 © Copyright Ian D. Romanick 2007

Multiple Texture Coordinates
Problem: Can't call glActiveTexture

between begin / end.

6-November-2007 © Copyright Ian D. Romanick 2007

Multiple Texture Coordinates
Problem: Can't call glActiveTexture

between begin / end.

Solution: Add glTexCoord commands that
take the texture unit as a parameter.

glMultiTexCoord{234}{bsifd
ubusui}{v}(GLenum unit, ...);

6-November-2007 © Copyright Ian D. Romanick 2007

Multiple Texture Combiners
Combiner state is per-unit.

● One input is the texel value.

● The other input is one of:
• The primary color for unit 0.
• The output of the previous unit for all other units.

6-November-2007 © Copyright Ian D. Romanick 2007

Break

6-November-2007 © Copyright Ian D. Romanick 2007

Texture Combiners
Base OpenGL 1.2 functionality is very limited.

GL_ARB_texture_env_combine provides a
much better interface.
● More general

● More generic
• Operation performed not dependent on texture format.

● Extendable
• Several extensions add more possible operations

● Became part of core in 1.3

6-November-2007 © Copyright Ian D. Romanick 2007

Texture Combine Introduction
Source for RGB and A of each operand:

● Primary color, texture color, constant color, or
output of previous combiner

Modifier for RGB and A of each operand:
● Color, one-minus-color, alpha, or one-minus-alpha.

Operation for RGB and A:
● Replace, modulate, add, biased add, interpolate, or

subtract.

Post-scale for RGB and A

6-November-2007 © Copyright Ian D. Romanick 2007

Enable Texture Combine
Enable by setting GL_COMBINE as texture

environment mode:
glTexEnvi(GL_TEXTURE_ENV,
GL_TEXTURE_ENV_MODE, GL_COMBINE);

6-November-2007 © Copyright Ian D. Romanick 2007

Set Sources
Up to 3 sources depending on operation.

● Named GL_SOURCE{012}_{RGB,ALPHA}

Each source can be one of the following:
● GL_TEXTURE – current texture value

● GL_CONSTANT – per-stage constant color

● GL_PRIMARY_COLOR – interpolated primary color

● GL_PREVIOUS – output of previous combiner stage

Set via glTexEnvi:
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB,
GL_TEXTURE);

6-November-2007 © Copyright Ian D. Romanick 2007

Set Modifiers
Modifiers named
GL_OPERAND{012}_{RGB,ALPHA}

Can be one of:
● GL_SRC_COLOR – value from selected color source

● GL_ONE_MINUS_SRC_COLOR – 1.0 minus value
from selected color source

● GL_SRC_ALPHA – value from selected alpha source

● GL_ONE_MINUS_SRC_ALPHA – 1.0 minus value
from selected alpha source

6-November-2007 © Copyright Ian D. Romanick 2007

Set Modifiers (cont.)
GL_*_COLOR can only be used with RGB

operands

Also set with glTexEnvi:
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB,
GL_ONE_MINUS_ALPHA);

6-November-2007 © Copyright Ian D. Romanick 2007

Set Operation
Six possible operations:

● GL_REPLACE – output is operand 0

● GL_MODULATE / GL_ADD / GL_SUBTRACT – output is
Arg0 {+ - * } Arg1

● GL_ADD_SIGNED – Arg0 + Arg1 - 0.5

● GL_INTERPOLATE – Arg0 * Arg2 + Arg1 * (1 –
Arg2)

Again, glTexEnvi for the win:
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB,
GL_SUBTRACT);

6-November-2007 © Copyright Ian D. Romanick 2007

Set Scale
Three possible scale factors:

● 1.0, 2.0, 4.0

Set with glTexEnvi or glTexEnvf:
glTexEnvi(GL_TEXTURE_ENV, GL_RGB_SCALE, 2);

glTexEnvf(GL_TEXTURE_ENV, GL_ALPHA_SCALE,
4.0);

6-November-2007 © Copyright Ian D. Romanick 2007

Dot­product Combiner
GL_ARB_texture_env_dot3 part of 1.3 core

Adds to new combine operations:
● GL_DOT3_RGB – 3 component dot-product of RGB

components

● GL_DOT3_RGBA – Like GL_DOT3_RGB, but also
writes value to alpha component

● Actual operation pre-biases each component by
-0.5, then scales result by 4.0.
• Usual post-scale is applied after the built-in scale.

6-November-2007 © Copyright Ian D. Romanick 2007

Dot­product Combiner (cont.)
Why pre-bias by -0.5?

6-November-2007 © Copyright Ian D. Romanick 2007

Dot­product Combiner (cont.)
Why pre-bias by -0.5?

● Range of colors is [0, 1], but components of
normals, for example, can be negative.

Why post-scale by 4.0?

6-November-2007 © Copyright Ian D. Romanick 2007

Dot­product Combiner (cont.)
Why pre-bias by -0.5?

● Range of colors is [0, 1], but components of
normals, for example, can be negative.

Why post-scale by 4.0?
● The pre-bias gives a range of [-0.5, 0.5]. Multiplying

two values in that range gives a new range or
[-0.25, 0.25]. The post-scale expands the range to
[-1.0, 1.0].

6-November-2007 © Copyright Ian D. Romanick 2007

Related Extensions
GL_EXT_texture_env_combine

● Like ARB version

● Without GL_SUBTRACT.

● Operands to GL_INTERPOLATE more restricted.

● Lots of older hardware supports this but not ARB
version.

GL_EXT_texture_env_dot3
● Like ARB version, without built-in scale by 4.0.

● AFAIK, only the original Radeon (Radeon 7200)
supports this and not the ARB version.

6-November-2007 © Copyright Ian D. Romanick 2007

Related Extensions ­
GL_ARB_texture_env_crossbar

Part of core since GL 1.4.

Adds new sources:
● GL_TEXTURE<n> - Use any texture as an input to

any stage

 Supported by everyone except Nvidia.

● Has rules about what to do when a disabled unit is
referenced that didn't work on Nvidia hardware.

● That rule was relaxed for GL 1.4.

6-November-2007 © Copyright Ian D. Romanick 2007

Related Extensions ­
GL_ATI_texture_env_combine3

Adds new operations:
● GL_MODULATE_ADD_ATI – Arg0 * Arg1 + Arg2

● GL_MODULATE_ADD_SIGNED_ATI – Arg0 * Arg1 +
Arg2 - 0.5

● GL_MODULATE_SUBTRACT_ATI – Arg0 * Arg1 –
Arg2

Adds new sources:
● GL_ZERO and GL_ONE

Supported by all ATI hardware since Radeon
7200.

6-November-2007 © Copyright Ian D. Romanick 2007

Related Extensions ­
GL_NV_texture_env_combine4

New environment mode (GL_COMBINE4) with
two operations:
● GL_ADD – (Arg0 * Arg1) + (Arg2 * Arg3)

● GL_ADD_SIGNED – (Arg0 * Arg1) + (Arg2 * Arg3) –
0.5

● All other modes can be derived from these two!

Adds new sources:
● GL_ZERO and GL_TEXTURE<n>

Supported on all Nvidia hardware since the
TNT.

6-November-2007 © Copyright Ian D. Romanick 2007

Next week...
Lighting calculations with texture combiners

● Tangent space

● GL_DOT3_RGB for the win! :)

Quiz #3.

6-November-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not necessarily

represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

